
StereoMorph User Guide
Collecting shape data using the R package ‘StereoMorph’

March 2017
Version 1.6.1

StereoMorph User Guide v1.6.1 TABLE OF CONTENTS

Table of Contents
1 Introduction 4

2 Getting started 5
2.1 Installing StereoMorph . 5
2.2 Installing ffmpeg (only if using video) . 6

3 Choosing cameras 9
3.1 Cameras for stereo photography . 9
3.2 Cameras for stereo videography . 10

4 Creating a checkerboard 11
4.1 Determining an appropriate checkerboard size 11
4.2 Creating the checkerboard . 12
4.3 Measuring square size using DPI and scaling 15
4.4 Precision measurement of square size using a ruler 16
4.5 Creating a checkerboard stand . 22

5 Arranging the cameras 25
5.1 Arrangement for stereo photography . 25

6 Calibrating stereo cameras 32
6.1 General calibration steps and parameters 33
6.2 Calibrating with photographs . 34
6.3 Calibrating with videos . 36
6.4 Estimating calibration coefficients . 38
6.5 Determining the calibration accuracy . 39

7 Photographing objects 44

8 StereoMorph digitizing application 47
8.1 Digitizing video frames . 47
8.2 Opening the digitizing application . 48
8.3 Digitizing landmarks . 50
8.4 Digitizing curves . 52
8.5 Moving between images . 56
8.6 Keyboard shortcuts and cursor actions 56

9 3D Reconstruction 58
9.1 Reconstructing landmarks . 58
9.2 Measuring 3D lengths . 59
9.3 Reconstructing landmarks and curves . 60
9.4 Reading shape data . 62

10 Visualizing shape data 64

2

StereoMorph User Guide v1.6.1 TABLE OF CONTENTS

11 Reflecting missing bilateral landmarks 66

12 Aligning bilateral landmarks 69

13 Additional features 72
13.1 Extracting video frames . 72
13.2 Extracting synchronized frames . 73
13.3 Testing the accuracy using a second checkerboard 73

14 Citing StereoMorph 77

15 Acknowledgements 77

3

StereoMorph User Guide v1.6.1 1 Introduction

1 Introduction

These birds are easy pho-
tography subjects.

Users interested in collecting 3D shape data from biological
specimens or other objects confront an ever-growing number
of methods, each with its own advantages and disadvantages.
There’s 3D laser scanning, surface photogrammetry, and CT
scanning - just to name the most popular methods out there.
These methods are ideal for creating high-resolution 3D sur-
face or volumetric reconstructions. However they require
either specialized hardware for the scanning process or spe-
cialized software for the reconstruction and digitization of
the 3D representations they produce. Additionally, these
methods can be time-consuming at one or more steps in the
data collection process, making them better suited to the
collection of high quality data from relatively few specimens
or objects.

I designed the StereoMorph R package specifically for
cheap and rapid collection of relatively few landmarks and
curves from a large number of specimens or objects. Stere-
oMorph allows you to arbitrarily position two or more cameras around some volume of
space, calibrate the cameras using a checkerboard, photograph a selection of objects,
manually digitize points and curves on these objects from each camera view, and then
reconstruct these points and curves into 3D (note that StereoMorph can only be used to
reconstruct points and curves, not 3D surfaces). StereoMorph also has the capability to
calibrate stereo video cameras so that 3D shape data can be collected from video-captured
subjects like moving animals.

This user guide demonstrates the features of StereoMorph. Each step is accompanied
by example datasets so you can try out the code yourself. These example files can then
serve as a useful template for creating your own project. I hope you find this tutorial
helpful and wish you the best with your project!

Aaron Olsen
March 2017

4

https://cran.r-project.org/package=StereoMorph

StereoMorph User Guide v1.6.1 2 Getting started

2 Getting started

2.1 Installing StereoMorph
This section will show you how to install the R package StereoMorph. The R project is
a computing language and platform that allows users to freely upload and share software
packages.

1. If you do not already have R installed on your computer, begin by installing R. R can
be installed on Windows, Linux and Mac OS X.

2. Once installed, open R.

3. Go to Packages & Data → Package Installer

4. Find the StereoMorph package binary by typing “StereoMorph” into the Package
Search box and clicking Get List (the repository version of StereoMorph may be greater
than the version in the image below).

5

https://cran.r-project.org/package=StereoMorph
http://cran.r-project.org/
http://cran.r-project.org/

StereoMorph User Guide v1.6.1 2.2 Installing ffmpeg (only if using video)

5. Check the box next to Install Dependencies. This ensures that all the packages that
StereoMorph requires to run will be installed as well. Then click Install Selected to install
StereoMorph.

6. Throughout this tutorial I’ve included R code that you can use to reproduce examples.
All R code is in the courier font style on a gray background as in the example below,
with comments indicated in orange (and preceded by a ‘#’) and function names in blue.

Print 'Hello world!'
print('Hello world!')

To run each line of code, simply copy and paste the code into the R console.

7. Before calling any StereoMorph functions, load the StereoMorph package into the
current R session using the library command.

Load the StereoMorph package
library(StereoMorph)

2.2 Installing ffmpeg (only if using video)
If you are only using StereoMorph with photographs (not video) then this section can
be skipped. As of version 1.6, StereoMorph has some basic video-handling capabilities.
This includes calibrating two video cameras using video files, rather than using a set of
photographs or already extracted frames from each video.

R does not have native support for reading frames from video files. Thus, a codec library
must be installed in order for StereoMorph to extract frames from video files. Once the
codec is installed and accessible from the command line, all video handling can be done

6

StereoMorph User Guide v1.6.1 2.2 Installing ffmpeg (only if using video)

within R. This section will show you how to install the video codec library ffmpeg. Cur-
rently, these ffmpeg installation instructions are only suitable for Mac OS X.

1. Download the latest static build of ffmpeg for your operating system (less than 80
MB unzipped). On the ffmpeg download site you’ll find links to the static builds under
“Get the packages”. For example, the most recent static build for Mac OS X can be
downloaded here.

2. The downloaded static build should be a compressed folder. Unzip this folder. Inside
you should see an executable named ‘ffmpeg’ (and possibly also ‘ffprobe’ and ‘ffserver’,
which we do not need). Move the ffmpeg executable to the ‘Downloads’ folder.

3. We will now copy the ffmpeg file into ‘/usr/local/bin’. The easiest way to do this is
through Terminal. Open the Terminal app (for entering command line codes). Note that
all of the following commands are to be entered into Terminal (not into the R console).

In Terminal, navigate to the folder containing the ffmpeg file using the ‘cd’ (change
directory) command. Type ‘cd’ followed by the file path to your Downloads folder. For
example, the path on my system is ‘/Users/aaron/Downloads’.

cd /Users/aaron/Downloads

Make sure that there is a bin folder ‘/usr/local/bin/’ using the ‘mkdir’ command (make
directory). The ‘sudo’ before mkdir simply adds extra permissions to the commands so
that the codec library will be accessible to your system (you may be prompted to type
in your password).

sudo mkdir /usr/local/bin/

If this returns a line that includes “File exists”, then this folder already exists on your
system.

Copy the ffmpeg file into /usr/local/bin using the ‘cp’ command.

sudo cp ./ffmpeg /usr/local/bin

Set the access permissions to ffmpeg so that it can be called by R using the ‘chmod’
command. The numeric code ‘755’ specifies a permission level that allows ffmpeg to be
called from R.

sudo chmod 755 /usr/local/bin/ffmpeg

4. To make sure that system can find the ffmpeg command, we’ll add /usr/local/bin to
the $PATH variable. This is a set of folders that the system looks in when searching for
a command. Use the ‘cd’ command (but without any path after it) to navigate to the
home folder.

7

https://ffmpeg.org/
https://ffmpeg.org/download.html
http://www.ffmpegmac.net/

StereoMorph User Guide v1.6.1 2.2 Installing ffmpeg (only if using video)

cd

Then use the ‘open’ command to open the bash profile.

open -e .bash_profile

If the bash profile doesn’t exist, you can create it using the following ‘touch’ command
and then use the open command.

touch .bash_profile

The bash profile should open in TextEdit. Add a new line at the end of the document
and paste in the following:

export PATH="/usr/local/bin:$PATH"

5. Save the bash profile and then close and re-open Terminal (this will refresh Terminal
so that it reflects the changes in the bash profile). In Terminal use the ‘echo’ command
to print the current $PATH variable.

echo $PATH

You should see ‘/usr/local/bin’ between colons or at the beginning of the path followed
by a colon.

We can now check that ffmpeg is properly installed by simply typing ‘ffpmeg’ in Terminal.
If ffmpeg has been properly installed and can be located on the system, this should print
the version number, copyright and other configuration details.

ffmpeg

8

StereoMorph User Guide v1.6.1 3 Choosing cameras

3 Choosing cameras
When two or more cameras arranged in stereo are calibrated (using either photographs
or video), the resulting calibration is specific to that particular arrangement of the cam-
eras (their position and orientation). The cameras can move if they are rigidly attached
to some support system and the support system itself is moved. However, the relative
position and orientation of the cameras relative to one another must remain fixed to
collect accurate 3D data. Additionally, the calibration is specific to the particular zoom
and focus, so these must also remain fixed.

Keeping the cameras immobile and maintaining the same zoom and focus necessitates a
few key technical specifications:

• A remote trigger mechanism (since touching the shutter button repeatedly causes
the camera to move)

• Manual focus mode (i.e. ability to turn off auto-focus).

• Manual zoom mode (i.e. ability to turn off auto-zoom).

3.1 Cameras for stereo photography
For stereo reconstruction using photographs, the easiest setup consists of two digital
cameras and two tripods. Although it is possible to use a mirror to split a single camera
view into two views, the resulting photographs would have to be split into image pairs
for calibration and digitizing.

Several DSLR (digital single-lens reflex camera) cameras satisfy the above specifications.
Many come with a wireless remote shutter trigger, which removes the need to touch the
camera at all when taking photographs. DSLRs typically permit complete manual con-
trol over the zoom and focus of the lens and remote shutter triggering. Cheaper digital
camera models tend to have power-saving modes and other automated-only features that
make it impossible to have the camera remain motionless for up to an hour while tak-
ing photographs. The stereo photography examples in this guide were captured using a
Nikon D5000.

9

StereoMorph User Guide v1.6.1 3.2 Cameras for stereo videography

An example of a DSLR camera (NikonTM D5000). Image credit: Nikon.

Additionally, lenses can be used with DSLRs that minimize image distortion. As of ver-
sion 1.6, StereoMorph can account for standard types of lens distortion (e.g. pincushion
and barrel distortion). But it’s best if distortion can be avoided altogether simply by
choice of lens. For example, an AF-S DX Nikkor 18-55mm lens (the basic lens that Ni-
ikon sells with their DSLR) zoomed in to 55mm has negligible distortion. Note that if
an 18-55mm lens is zoomed out to 18mm (wide-angle), however, the lens does introduce
a lot of distortion. If you have a zoom lens, zooming in as much as possible will reduce
the distortion. The cost of a basic camera model (including a lens) that meets these
specifications is typically less than $600 (USD).

The section Arranging the cameras has more details regarding specific camera settings
and features for stereo arrangement and calibration.

3.2 Cameras for stereo videography
For users interested in collecting shape data from moving subjects, StereoMorph (as of
version 1.6) can also calibrate video cameras using a checkerboard pattern. The video
cameras must adhere to the same general specifications described above. An advantage
of video cameras is that once the camera is triggered it will continue recording without
having to continually press a shutter button, thereby minimizing the chance of moving
the cameras.

For regular-speed applications (as opposed to high-speed), DSLR cameras or dedicated
video cameras (e.g. GoProTM) work well. The stereo video examples in this guide were
captured using GoProTM Hero 3+ cameras. For underwater applications, GoPro cameras
work well since they can be used with waterproof housing.

An example of a camera that can be used for stereo videography, the GoProTM Hero
3+. Image credit: GoPro.

10

https://photographylife.com/what-is-distortion

StereoMorph User Guide v1.6.1 4 Creating a checkerboard

4 Creating a checkerboard
Camera calibration in StereoMorph is based on a checkerboard pattern. The checker-
board provides a sampling of points in a plane that can easily be detected automatically.
This saves the user time by not having to manually identify calibration points. A series
of images or frames must be captured with the checkerboard in different positions and
orientations throughout the space to be calibrated.

4.1 Determining an appropriate checkerboard size
The size of the whole checkerboard pattern will depend on the scale of your application.
To determine the size you need, first estimate the volume of space that you want to cali-
brate - this is the volume of space that visible from two or more cameras. If the minimum
dimension of this space is less than approximately 0.5 m, then the entire checkerboard
pattern should be about half the minimum dimension of the volume.

For example, for a calibrated volume with approximate dimensions of 0.3 m x 0.35 m x
0.4 m, a checkerboard pattern measuring 0.15 m along one dimension should be ideal.
This allows the checkerboard pattern to be moved around the space and rotated while
maintaining the entire pattern within the image frame.

For a calibrated volume with a minimum dimension less than 0.5 m, a checkerboard
about half the frame size works well (only one camera view shown). This allows enough

room to move the checkerboard to different positions and angles.

Alternatively, if you’re calibrating a volume with minimum dimensions larger than 0.5 m
it will become difficult to print and manipulate a sufficiently large checkerboard pattern.

11

StereoMorph User Guide v1.6.1 4.2 Creating the checkerboard

For minimum dimensions larger than 1 m (for example, for a calibrated volume measuring
2 m x 3 m x 4 m), a checkerboard pattern measuring 0.5 m along one dimension should
work well.

For a calibrated volume with a minimum dimension larger than 0.5 m, a checkerboard
pattern that is about 0.5 m along one dimension works well but must be moved more

around the volume (only one camera view shown). Image credit: Caine Delacy.

4.2 Creating the checkerboard
Materials needed for this section:

• Cardstock paper

• A flat, hard surface of the same dimensions as the desired checkerboard

• Glue or tape with which to attach paper to surface

This section will show you how to create your own checkerboard using the StereoMorph
function drawCheckerboard().

1. Be sure that you’ve installed the StereoMorph package and load the StereoMorph
library into the current R session.

Load the StereoMorph library
library(StereoMorph)

2. Then call drawCheckerboard() with the following parameters: nx (number of internal
corners horizontally), ny (number of internal corners vertically), square.size (size of the
squares in the image in pixels), filename (where the image will be saved, including the
filename).

12

StereoMorph User Guide v1.6.1 4.2 Creating the checkerboard

Create checkerboard
drawCheckerboard(nx=8, ny=6, square.size=180, filename='Checkerboard 8x6 (180px).JPG')

This will create a checkerboard with 8 internal corners along one dimension, 6 internal
corners along the other dimension and squares that are 180 pixels along each side. Note
that throughout this tutorial “square size” refers to the length along any one side of the
square (not, for instance, a diagonal distance or area). Also, note that the number of
internal corners are not the number of squares but the number of intersections of black
squares. We care about the number of internal corners, rather than the number squares,
because it’s actually the internal corners that will be detected.

Checkerboard with 8 x 6 internal corners.

Also, note that the checkerboard has a different number of internal corners along each
dimension. This is essential to ensure that the corners are returned in the same order
when the checkerboard is photographed in different orientations.

3. You can now print the checkerboard. I’ve been able to achieve great calibrations with
inexpensive, desktop printers so any decent printer should do. Even when attaching the
paper to a hard surface it’s best to use a thicker paper such as cardstock. Once taped or
glued to a hard surface, cardstock is less likely to get bubbles from moisture over time.
In the printer prompt, print the checkerboard at 10% scaling.

13

StereoMorph User Guide v1.6.1 4.2 Creating the checkerboard

Printing an 8x6 checkerboard at 10% scaling.

4. Attach the checkerboard to a flat, hard surface using glue or tape. This way, the
checkerboard can be more easily positioned at different angles without bending. If you
don’t require exceptionally high accuracy, a flat piece of wood or cardboard should be
sufficient. If you want an exceptionally flat surface, I recommend plexiglass (at least 0.22
inches thick).

Thick plexiglass (0.22”) works well as a flat surface for high-accuracy applications.

The checkerboard doesn’t have to be aligned with the edge of the flat surface. For high-
accuracy applications be sure to push out any bubbles between the paper and the surface.
I use a spray adhesive to apply the checkerboard to be sure that it lays flat across the
entire surface.

14

StereoMorph User Guide v1.6.1 4.3 Measuring square size using DPI and scaling

Checkerboard glued to plexiglass.

4.3 Measuring square size using DPI and scaling
We know that the squares were 180 pixels in the image file, but how large are the squares
once they are printed on paper? We must know the size of the squares in real units (e.g.
mm, inches) in order to properly scale our calibration. For a rough estimate, we can
simply measure the length across the entire checkerboard and divide by the number of
squares.

However, if we want to be more accurate we can calculate the real square size using known
values from our printer scaling. Standard inkjet or laser printers (at least American
printers) will print images at 72 dpi (dots per inch) by default. The DPI and scaling
during printing determines how the size of an image in pixels will be converted into inches
when the image is printed on paper. Thus, we can calculate the real square size using
the square size in pixels, the printer scaling, and the printer DPI (dots per inch):

Square size in
pixels ∗ 1

DPI
∗ Scaling = Printed square

size in inches
(1)

Or an additional conversion to mm can be added:

Square size in
pixels ∗ 1

DPI
∗ Scaling ∗ 25.4 mm

inch
= Printed square

size in mm
(2)

The square size of 180 pixels and 10% scaling used in this example were chosen purposely
to create printed squares that are 0.25 inches (6.35 mm) along each side when printed at

15

StereoMorph User Guide v1.6.1 4.4 Precision measurement of square size using a ruler

72 DPI. Once you’ve measured the square size, it’s good to write it on the front of the
checkerboard lightly in small script with a pencil. This way you can read the square size
directly from any photographs you take during the calibration.

An 8x6 checkerboard printed at 10% scaling and 72 DPI will create 0.25 inch (6.35 mm)
squares.

4.4 Precision measurement of square size using a ruler
This section will show you how to precisely measure the square sizes in a checkerboard
pattern using an independent standard such as a ruler. The previous section demon-
strated how to calculate the size of printed squares based on the size of the squares in
pixels, the DPI and the scaling. For most applications that should predict the size of
the squares fairly well. But if your setup requires exceptionally high accuracy or you are
unsure about the accuracy of your printer, you can follow the steps in this section.

1. Find a ruler. The required precision of the ruler will depend on the application. A
standard office ruler should work well for most applications. If you require high accuracy,
you can use a precision ruler. For this tutorial I used a 12” Single “A” - #46-IM precision
rule by Schaedler (approximately $30, including tax and shipping), which has an accuracy
tolerance of better than 0.00024”.

16

StereoMorph User Guide v1.6.1 4.4 Precision measurement of square size using a ruler

A precision ruler.

2. Take a photograph of the ruler and the checkerboard pattern so that they are both
visible in the image.

A photograph of a 7x6 checkerboard pattern and a ruler. Nikon D5000 with AF-S DX
Nikkor 18-55mm lens at 55mm, f/36.

There are few important points when taking the photograph:

• Make sure that the entire checkerboard pattern falls within the image.

• Use a camera lens with minimal lens distortion. For the above image, I used an
18-55mm zoom lens zoomed in all the way to 55mm. At 18mm the lens would have
significant barrel distortion but zoomed in to 55mm the distortion is negligible.

• Position the camera and checkerboard so that the checkerboard is approximately
coplanar with the image plane or the end of the camera lens (i.e. the long-axis of
the lens should be at a right angle to the checkerboard). If the checkerboard is
at an angle relative to the image plane, some squares will be closer to the image
plane than others, resulting in a difference in size on the imaging plane (this is the
perspective effect).

17

StereoMorph User Guide v1.6.1 4.4 Precision measurement of square size using a ruler

• For the same reason, the ruler should be in the same plane as the checkerboard
pattern. If the ruler has some depth to it, raise the checkerboard so that it is
coplanar with the points you’ll be digitizing on the ruler.

• Position the ruler so that it is not at the very edge of the image. It is not possi-
ble to eliminate lens distortion entirely when taking a photograph and the edges
will generally have the highest distortion. So it is best to keep everything being
measured away from the edges.

3. Upload the photograph of the checkerboard and ruler to your computer. Be sure
the image name does not contain commas or periods. If you’d like to work through the
example below, you can download an example image, “7x6.jpg” here (0.3 MB). Note that
this checkerboard is slightly different from the one we created earlier. It has 7x6 internal
corners and the square size in the image was 144 pixels (printed at 10% scaling). Save
this image to your R working directory.

4. Load the StereoMorph library if it isn’t already loaded.

Load the StereoMorph library
library(StereoMorph)

5. All of the remaining steps will be performed within the StereoMorph digitizing appli-
cation. This is a browser-based application for manually digitizing landmarks and curves
in photographs.

The application is launched from R and opens in your default web browser; you do not
need to be connected to the internet to launch the app (it runs on an internal server).
To launch the app, use the function digitizeImages() with the following parameters: im-
age.file (an image or folder of images to be digitized) and shapes.file (a file or folder where
the digitized data will be saved). Using the example image, “7x6.jpeg”, the function call
looks like this:

Open the digitizing application
digitizeImages(image.file='7x6.jpg', shapes.file='7x6.txt')

18

https://aaronolsen.github.io/software/stereomorph/tutorial_files/7x6.jpg

StereoMorph User Guide v1.6.1 4.4 Precision measurement of square size using a ruler

The StereoMorph digitizing app.

Once the app launches you should see the image on the left side of the window and
a control panel on the right side. The Digitizing photographs section will explain the
features of the app in more detail. For this section we will just measure the checkerboard
square size and digitize points on the ruler.

6. Click on the “Scaling” tab in the right upper corner of the window.

The Scaling panel of the digitizing app.

19

StereoMorph User Guide v1.6.1 4.4 Precision measurement of square size using a ruler

7. In the text field to the right of “Internal corners”, enter the number of internal
corners along each dimension of the checkerboard, separated by a comma, and click
“Find Checkerboard”.

Entering the number of internal corners.

The StereoMorph function findCheckerboardCorners() will then automatically detect the
internal corners of the checkerboard. This can take up to 20-30 seconds depending on the
size of the image. Once these have been detected, yellow dots and lines will be displayed
on top of the image with a small “1” indicating the first corner.

The detected corners displayed on top of the image.

Note that for measuring the square size, the order in which the corners are detected
doesn’t matter. However, the order will become important later during the calibration
step. Also, you’ll see in the Scaling panel that the square size (in pixels) is measured
once the corners are detected.

8. To get the square size in millimeters, all we need now is the conversion factor from
pixels to millimeters (i.e. how many millimeters correspond to a single pixel in the image).
Select “Ruler point 1” in the Scaling panel in order to set this as the current landmark.

20

StereoMorph User Guide v1.6.1 4.4 Precision measurement of square size using a ruler

9. Then move your cursor to the ruler mark at 12 cm in the image and double-click.
This will create a landmark at that position.

Double-click to add a landmark.

You can zoom in and out of the image by scrolling and you can move around the image
by clicking and dragging the image with the mouse. If you want to change the position
of the landmark, first make sure the landmark is selected by double-clicking on the land-
mark or clicking on the row in the Scaling panel (the landmark will turn from blue to
green). Then click and drag the landmark with the mouse or use the arrow keys to move
by a pixel at a time. To delete a landmark, first select the landmark and then press ’d’.

10. Digitize an addition 5 ruler points, selecting them in the Scaling panel and then
placing them at the marks for 11, 10, 9, 8 and 7 cm. Every time you add a ruler point,
the app will automatically create a new row in the ruler point table. The app will also
continually update the corresponding ruler interval (in pixels) as you add or change ruler
points.

11. In the Scaling panel, enter the distance between each consecutive ruler point with
the units, in this case 10 mm. The app will calculate the checkerboard square size and
this will be displayed to the right of “Checkerboard square size (units)”.

21

StereoMorph User Guide v1.6.1 4.5 Creating a checkerboard stand

A measured checkerboard square size of 5.087 mm.

In this case, the measured square size is 5.0870 mm (your results will likely differ a
bit because you are unlikely to digitize the exact same pixel coordinates). For this 7x6
checkerboard, the square size was 144 pixels and the checkerboard was printed at 10%
scaling. Based on the equations for based on the DPI and printer scaling we would expect
the printed square size to be 0.2 inches (5.08 mm). Note that our precision measurement
differs by only 0.007 mm (7 microns) from what we expected. If you select a different
ruler interval, select different points on the ruler, etc. you are likely to get a slightly dif-
ferent measurement but in general these measures should not differ by more than 0.2%
of the square size.

Note also that in addition to calculating the size of the checkerboard, the scaling panel
tells you the size of each pixel in the units you specify. In this case, each pixel is about
0.021 mm wide (21 microns). You won’t be able to measure the checkerboard square
size much below this threshold since you can’t digitize at a resolution smaller than a
pixel. However, by sampling many points on the ruler it’s possible to achieve a slightly
higher resolution than the pixel resolution. We’ll see later that the checkerboard corner
detection also uses local image sampling around the corner to achieve a resolution greater
than the pixel resolution.

12. Click “Save” to save the checkerboard corners, ruler points and scaling data to the
file you specified using the shapes.file parameter. If you’d like to refer back to the square
size measurement you can read either re-launch the digitizing app using digitizeImages()
with the same input parameters (all of the saved data will be loaded in) or you can read
the shape file directly. StereoMorph uses a custom XML-like format to save these data;
you’ll find the checkerboard square size saved within the “square.size” tag in the shapes
file.

4.5 Creating a checkerboard stand
Materials needed for this section:

• Needle-nose pliers

• Thick wire (around 16 gauge)

22

StereoMorph User Guide v1.6.1 4.5 Creating a checkerboard stand

If you are using StereoMorph for stereo photography, it’s useful to have a stand that will
hold the checkerboard in place while you take calibration photos with multiple cameras.

A simple checkerboard stand.

If you were to simply hold the checkerboard with your hand you would have to ensure the
cameras took photographs at the exact same time. For stereo video, the checkerboard
can be moved manually since the videos will have to be synchronized anyway.

Constructing a simple stand by bending a single piece of wire.

23

StereoMorph User Guide v1.6.1 4.5 Creating a checkerboard stand

The type of stand you’ll need depends on the size of your stereo setup. If your checker-
board isn’t too heavy, you can create a simple stand with some wire and pliers as shown
above. For a large, heavy checkerboard you may need to attach the hard surface to
another object via a hinge and use heavy objects to prop the checkerboard at different
angles.

A hinged stand.

24

StereoMorph User Guide v1.6.1 5 Arranging the cameras

5 Arranging the cameras
The basic idea behind a stereo camera setup is to use information from two different
views of the same object in order to reconstruct features visible in both views into 3D.
A single view or image of an object has a information on the shape of features along the
two dimensions of the image plane but not along the third dimension (going into and out
of the image plane). Thus, by combining the information from two different views it is
possible to obtain three-dimensional information on position and shape.

There are a number of ways to arrange cameras in stereo. This section will outline
some general considerations to help you determine which camera arrangement will work
best for your application. Once you’ve found a configuration that works well for your
application, make sure you check its accuracy (either using the calibration images or a
separate set of images) before collecting data.

5.1 Arrangement for stereo photography
Materials needed for this section:

• 2 cameras (see Choosing cameras for stereo photography)

• Camera remotes

• 2 sturdy tripods

• Tape

General considerations in arranging the cameras:

1. The views among the cameras must overlap such that the feature or features of in-
terest are visible in both camera views. If you want to collect data on features around
an entire object (for example the top, side and bottom of a skull) you can rotate the
specimen and take two or more pairs of photographs of the same object. You’ll end
up with two or more separate sets of landmarks and/or curves. As long as there are
three or more landmarks common among the different sets these can be aligned, or “uni-
fied”, based on these common landmarks into a single set. StereoMorph has a function
that will do this automatically, which will be detailed in Unification of reconstructed sets.

2. Theoretically, there is a trade-off between the ease of digitizing and reconstruction
accuracy. For instance, if the angle between two camera views in a stereo setup is 90
degrees,

25

StereoMorph User Guide v1.6.1 5.1 Arrangement for stereo photography

Two-camera stereo setup with the cameras at 90 degrees relative to one another.

you will have high reconstruction accuracy (together, the two views give you full infor-
mation on a point’s position along all three axes) however the views will be so divergent
that it will be difficult to identify the same point in both views. A point visible in one
view may not even be visible in the other. If the angle between two cameras is reduced
to around 20 degrees

Two-camera stereo setup with the cameras at 20 degrees relative to one another.

it’s much easier to find the same point in both views (the views are nearly the same),
however these slight differences in position are now the only information available on the
point’s position along the depth axis (orthogonal to the image planes). In practice, I’ve
found that cameras positioned with a small angle relative to one another still provide
high reconstruction accuracy but do not work as well for curve reconstruction. It’s best
to start with the cameras as close together as possible (more convergent views), test the
accuracy and make the views more divergent if the accuracy is worse than what you’re
willing to accept.

26

StereoMorph User Guide v1.6.1 5.1 Arrangement for stereo photography

The cameras were arranged as shown below for the accompanying example project.

One possible camera arrangement.

This is a nice setup because the orientation of both views is the same. By moving the
cameras and changing the angle you can change the extent of divergence between the
views. Also the table provides an easy place to set the objects and lights. An alternative
setup is to have one camera on the tabletop and the other camera on the floor.

An alternative camera arrangement.

A disadvantage to this setup is that the view from one camera will be “upside-down”
relative to the other. You can flip all of the images once they’re loaded on your computer

27

StereoMorph User Guide v1.6.1 5.1 Arrangement for stereo photography

to compensate for this.

3. It is essential that the cameras not move during the entire process of calibration and
photographing specimens. The cameras can be calibrated before or after data collection
but throughout and between these steps the cameras must remain in the exact same
position. Because the camera is often positioned half a meter or more away from the
object, even a small shift of the camera can translate into a large shift in the image frame,
causing large inaccuracies.

If you position a tripod on a smooth surface, such as a table top, put small rubber squares
under each tripod foot to keep the tripod from slipping.

4. Before you take any photographs, you can attach small pieces of tape to the tabletop
or some other fixed surface within the calibration space and visible from both camera
views.

By taking a photograph from both views before you begin and then after you have fin-
ished photographing all objects with a particular calibration you can compare the before

28

StereoMorph User Guide v1.6.1 5.1 Arrangement for stereo photography

and after photographs to be sure that both cameras remained motionless throughout the
photographing process.

5. Just as the cameras should not move during the entire process of calibration and
object photographing, the camera settings themselves should not change. This includes
the zoom (focal length) and the focus. The calibration is specific to a particular focal
length and focus, so if either of these changes the calibration will no longer be accurate.
Additionally, if your lens has vibration reduction (VR) you should turn this off. Vibration
reduction uses a small gyroscope in the lens to compensate for camera motion and reduce
blur. The spinning and stopping of the gyroscope can cause the image frame to shift
randomly while taking photos.

Turn off auto-focus and vibration reduction, if applicable.

6. It’s best to use a remote (wireless or cord) to release the shutter so you minimizing
touching the shutter button on the cameras as much as possible.

Shutter remotes lessen the chances of the cameras moving during data collection.

29

StereoMorph User Guide v1.6.1 5.1 Arrangement for stereo photography

I’ve found that pressing buttons on the camera lightly (such as for reviewing photos)
doesn’t cause significant movement of the cameras but pressing the shutter button re-
quires more force and doing it repeatedly causes the cameras to move significantly over
a series of photographs. A wireless remote is the best option since you can trigger both
cameras with one remote (note that if the objects you are photographing are not moving
the photographs do not have to be taken simultaneously).

7. Make sure that all connections and screws in the tripod and between the tripod and
the camera are tight. This reduces the possibility of any motion of the cameras during
data collection.

Ensure tight connections in the tripod and between the tripod and camera.

8. Set the cameras to the smallest aperture (this is the largest f-value).

A smaller aperture is ideal because it increases depth of field. Without increasing the
lighting, the exposure time will increase.

30

StereoMorph User Guide v1.6.1 5.1 Arrangement for stereo photography

The smaller the aperture, the greater the depth of field (i.e. the more things are in focus
both close and far away from the camera). This is essential in a stereo camera setup
because in order to digitize points accurately throughout the calibration volume they
must be in focus.

9. If possible, set your camera to manual mode.

Manual mode on a Nikon.

This allows you to control both the aperture and shutter speed. Once you have the
cameras arranged take some sample photos of the objects to find a good shutter speed
(exposure) for your lighting. I’ve found that the automatic exposure on my camera is
not always reliable and that it’s better to simply have the same exposure throughout.

31

StereoMorph User Guide v1.6.1 6 Calibrating stereo cameras

6 Calibrating stereo cameras
In order to perform stereo camera reconstruction we need a mathematical formula or
model that relates particular combinations of 2D pixel coordinates from each view to
3D coordinates. The mathematical model used by StereoMorph is the DLT model (di-
rect linear transformation; Abdel-Aziz & Karara 1971). With the DLT method, each
calibrated camera has a set of 11 coefficients that relate each unique 3D coordinate in
the calibration space to their corresponding (non-unique) 2D pixel coordinates in that
particular camera view; modified forms of DLT use additional coefficients to account for
lens distortion but StereoMorph uses just 11.

Note that if you only have the coefficients for a single camera view you can only go one
way: you can only project 3D points to pixel coordinates, not the other way around.
This is because a point with particular pixel coordinates in an image can fall anywhere
along a line in 3D space. But if you have the DLT coefficients from two or more camera
views you can combine the pixel coordinates of a single point in both views from multiple
camera views to find the corresponding 3D coordinate. You can think of this as finding
the intersection of the two lines from each camera view in 3D space. Thus, the objective
of the camera calibration step is to determine these 11 DLT coefficients for each camera.

Just as there are multiple mathematical models for 3D reconstruction there are also mul-
tiple methods with which to determine the DLT coefficients. Typically, DLT coefficients
are determined using what’s referred to as a calibration or reference object. This is usu-
ally a 3D, cube-shaped structure filled with markers having known 3D positions relative
to one another. The markers are digitized in each camera and the set of corresponding
2D and 3D coordinates are used to calculate the DLT coefficients.

Because of the difficulties in designing and building a 3D calibration, and the time-
consuming task of digitizing the calibration cube markers, StereoMorph determines the
DLT coefficients using the internal corners automatically detected from a checkerboard
pattern. A checkerboard is photographed from both camera views at different posi-
tions and angles within the calibration space. Rather than estimate the DLT coefficients
directly, StereoMorph estimates the six transformation parameters (3 translation, 3 ro-
tation) required to transform the first checkerboard into each subsequent checkerboard
in 3D space by minimizing the reconstruction error. These transformation parameters
are then used to generate 3D coordinates (the equivalent of a calibration object) and
calculate the DLT coefficients.

Whether you are using stereo photographs or video, be sure that you position the checker-
board at different positions throughout the calibration space and at different
angles. This provides a sampling of points throughout the space for the calibration. If
you only photograph the checkerboard in one area of the calibration volume, reconstruc-
tion errors could be relatively higher in other areas. Similarly, if you only photograph
the checkerboard at a particular angle (e.g. 45 degrees), you won’t have good sampling
of points along each dimension of the space (since a checkerboard is a flat surface it can

32

https://en.wikipedia.org/wiki/Direct_linear_transformation
https://en.wikipedia.org/wiki/Direct_linear_transformation

StereoMorph User Guide v1.6.1 6.1 General calibration steps and parameters

only sample two dimensions at any one time). This can causes reconstruction errors to
be higher along particular dimensions than along others.

6.1 General calibration steps and parameters
Calibration in StereoMorph is accomplished using a single function, calibrateCameras().
As of version 1.6, this function works with both photographs and synchronized video.
While the parameters will differ depending on the camera arrangement and the type of
input (i.e. photograph versus video), calibrateCameras() follows four general steps:

1. Detect checkerboard corners: The function will try to find the specified number of
checkerboard corners in each input image.

2. Estimate undistortion coefficients: (Optional) If specified, the function will solve
for coefficients that minimize standard lens distortion. This will not undistort the
original photographs or video. But these coefficients will be used in the calibration
and reconstruction process to minimize error due to lens distortion.

3. Estimate DLT coefficients: The function will estimate a set of optimized DLT
coefficients that can be used to reconstruct points and curves from each view into
3D.

4. Estimate calibration accuracy: The function will estimate the calibration, using a
separate set of images within the calibration set (if a sufficient number of images
are supplied).

Because steps 1-3 are fairly time-consuming, the function will save the results of these
steps. If you decide you would like to re-run any of these steps you can simply call cal-
ibrateCameras() again. Before running each of these three steps, you will be prompted
whether you would like to keep the results from the previous run or re-run the step.

The calibrateCameras() function also has a general set of parameters used for both stereo
photography and videography.

• img.dir : A folder containing the calibration images or videos.

• sq.size: The size of one checkerboard square (length along any one side) including
the units (e.g. mm).

• nx : The number of internal corners along one dimension.

• ny: The number of internal corners along the other dimension (the choice of which
is nx and ny is arbitrary but must be consistent throughout).

• cal.file: A file where the calibration results will be saved (the file will automatically
be created if one doesn’t already exist).

33

StereoMorph User Guide v1.6.1 6.2 Calibrating with photographs

• corner.dir : A folder where the corners will be saved (the folder will be automatically
be created if one doesn’t already exist).

• verify.dir : (Optional) A folder where images will be saved that show the detected
corners (the folder will be automatically be created if one doesn’t already exist).

• error.dir : (Optional) A folder where several error diagnostic plots will be saved
(the folder will be automatically be created if one doesn’t already exist).

• undistort: A logical (TRUE or FALSE) indicating whether undistortion coefficients
should be estimated. Currently, this is only recommended for video input.

The following sections will show how to call calibrateCameras() using photographs and
video. Before proceeding, make sure the StereoMorph library is loaded into the current
R session.

Load the StereoMorph package
library(StereoMorph)

6.2 Calibrating with photographs
The following will show you how to call calibrateCameras() using a set of photographs
from two or more camera views.

1. Take 8-10 photographs from each camera of the checkerboard at different positions
and angles within the calibration space.

Four photographs of a checkerboard from two views at different positions and angles
within the calibration space.

2. Upload the calibration images into a folder, separating the images from different views
into two different folders (e.g. “Left” and “Right”, “View 1” and “View 2”). Note that if

34

StereoMorph User Guide v1.6.1 6.2 Calibrating with photographs

you are also photographing objects and you’re transferring images via a camera memory
card it’s best to wait until you’ve taken all the photographs before upload the calibration
images - taking the memory card out of the camera risks moving the cameras in which
case they’ll no longer be properly calibrated. If you are using a cord to upload the im-
ages then you can upload the calibration images, check the calibration and proceed with
photographing your objects.

If you’d like to work through the example below, you can download an example set of
calibration images here (5 MB). Unzip this folder and move it to your R working directory.

3. Call the calibrateCameras() function. The call for the set of example images looks
like this:

Calibrate cameras from photographs
calibrateCameras(img.dir='Calibrate_images', sq.size='6.35 mm', nx=8, ny=6,

cal.file='calibration.txt', corner.dir='Corners', verify.dir='Verify',
error.dir='Errors')

The function will begin by trying to detect the corners in all of the calibration images.
You can see the detected corners by looking in the “Verify” folder.

Verify image to check the order of the detected corners. The red circle indicates the
first corner and the blue circle indicates the last corner.

The corners are returned in a particular order and this order is important for the cali-
bration to work properly. In the verify image the first corner will be indicated by a red
circle and the last by a blue circle. A green line connects these two circles showing how
the corners are ordered between the first and the last (think RGB).

The corner detection will always return the corners ordered along the nx direction first
and the ny direction second. However, the identified “first” corner (red circle) may not

35

https://aaronolsen.github.io/software/stereomorph/tutorial_files/Calibrate_images.zip
https://aaronolsen.github.io/software/stereomorph/tutorial_files/Calibrate_images.zip

StereoMorph User Guide v1.6.1 6.3 Calibrating with videos

be same corner across all the images if the checkerboards are in very different orientations
(especially if one is upside down relative to the other). Be sure to look through the
verify images and check that the function is detecting the corners in the same
order for all of the calibration images (including across both views).

If your cameras are arranged such that one view is upside-down relative to the other, set
the flip.view parameter to TRUE in the calibrateCameras() call, as shown below. Note
that if you set flip.view to TRUE and use the example calibration images linked above,
the calibration will not work since the corner order will not be consistent between the
two views.

Calibrate cameras from photographs when one view is 'upside-down'
calibrateCameras(img.dir='Calibrate_images', sq.size='6.35 mm', nx=8, ny=6,

flip.view=TRUE, cal.file='calibration.txt', corner.dir='Corners',
verify.dir='Verify', error.dir='Errors')

For the example set, the corners are detected in all the images. However, this is unusual.
Usually, the detection will fail for a few images due to poor lighting or if portion of the
checkerboard is cut off. These images will simply be ignored. It’s a good idea to take at
least 10 calibration images, so that if a couple images fail you will still have enough to
get a good calibration.

6.3 Calibrating with videos
The following will show you how to call calibrateCameras() using a set of videos from
two or more camera views. This differs only slightly from calibrating with photographs
so much of the previous section will apply here as well. Your videos will need to be
synchronized in order for the calibration to work properly (the first frame in all views
must correspond to the same point in time). StereoMorph does not currently have tools
to synchronize videos so this will have to be done using another program. Also, make
sure that you have completed the steps in installing ffmpeg so that R can read the video
files.

1. Record video of the checkerboard pattern being moved and rotated throughout the
entire calibration space. It is essential that the checkerboard be moved throughout the
entire space or else reconstruction errors will be higher in some areas than in others.

36

StereoMorph User Guide v1.6.1 6.3 Calibrating with videos

Four frames from video of a checkerboard at different positions and angles within the
calibration space, recorded from left and right camera views. Image credit: Caine

Delacy.

2. Upload the videos into a single folder, naming each video file with the corresponding
camera view (e.g. “Left” and “Right” or “View 1” and “View 2”). If you’d like to work
through the example below, you can download an example set of calibration videos here
(19 MB). Unzip this folder and move it to your R working directory.

3. Call the calibrateCameras() function. The call for the set of example videos looks like
this:

Calibrate cameras from videos
calibrateCameras(img.dir='Calibrate_Videos', cal.file='calibration.txt',

corner.dir='Corners', sq.size='63.42 mm', nx=8, ny=4,
verify.dir='Verify', error.dir='Errors', undistort=TRUE,
num.aspects.read=100, fit.min.break=2, nlm.calls.max=15,
objective.min=0.8, max.sample.optim=30, num.sample.est=20,
num.aspects.sample=8, num.sample.sets=3, objective.min.break=1.2)

The function will begin by trying to detect the corners in all of the calibration images.
You can see the detected corners by looking in the “Verify” folder.

37

https://aaronolsen.github.io/software/stereomorph/tutorial_files/Calibrate_videos.zip
https://aaronolsen.github.io/software/stereomorph/tutorial_files/Calibrate_videos.zip

StereoMorph User Guide v1.6.1 6.4 Estimating calibration coefficients

Detected corners in a video frame. The red circle indicates the first corner and the blue
circle indicates the last corner. Image credit: Caine Delacy.

For the example set, the corners are detected for 83 frames in the left view and for 80
frames in the right view. However, there are only 68 frames for which the corners were
detected in both views. Note that we can only use the corners detected in both views
to estimate the calibration coefficients so we want to make sure that not only are the
corners detected in enough frames but that they are detected in both views for a sufficient
number of frames. Sixty-eight frames are more than sufficient for a good calibration.

6.4 Estimating calibration coefficients
After the checkerboard corners have been detected and (if specified) undistortion coef-
ficients estimated, the function will begin estimating the DLT (calibration) coefficients.
Because the estimation process does not always converge on the correct solution, the
function divides up the detected corners into different sets and run separate calibrations
for each set. It then saves the calibration with the lowest error. The number of sets that
are created by default depends on the number of detected sets. The parameters that
control this are:

• num.sample.est: the number of aspects in the pool of images that will be used to
estimate the coefficients

• num.sample.sets: the number of unique sets that will be tried

• num.aspects.sample: the number of aspects in each set that will actually be used
to estimate the coefficients

The function prints these parameters before the estimation step. The parameter values
used in the previous examples of calibration from photographs and from video should

38

StereoMorph User Guide v1.6.1 6.5 Determining the calibration accuracy

work well for most cases but you can adjust these parameters if needed.

To estimate the DLT coefficients, calibrateCameras() uses an optimization routine that
sequentially adds each checkerboard aspect (all views of a checkerboard in a particular
position). As the number of parameters increases, the number of aspects increases and
the optimization will take progressively more time up to the maximum number of aspects.
For this reason, num.aspects.sample should not be greater than 9. Adding more aspects
after 9 does not generally cause any further increase in accuracy.

6.5 Determining the calibration accuracy
The optimization should generally converge on a value (reconstruction error) less than
1 for each minimization. This value is in pixels so regardless of the scale of your setup
this error should be less than 1. If for some reason a particular set is not converging
the function might stop running the minimization and switch to the next set. If the
optimization fails to converge for all of the sets there is probably an error in the corre-
spondence between the two corner sets. Most commonly this is due to corners that are
in different orders between two views or between different aspects. The DLT coefficients
corresponding to the optimization with the lowest error will then be saved in the “cali-
bration.txt” file as an 11x2 matrix.

Once the best calibration is selected, the calibrateCameras() tests the calibration ac-
curacy using all of the available calibration checkerboards. Note that these errors are
measured using the same checkerboard that was used for the calibration. Therefore, they
cannot be used to test whether the scaling of the calibration is correct. To test the accu-
racy of the calibration including scaling it’s best to test the accuracy using an additional
checkerboard with a different square size. The error diagnostics are the same in both
cases so they will be described in this section. This section will use the calibrating from
photographs example to explain how to interpret the various calibration error tests.

After the coefficient estimation, calibrateCameras() prints a “dltTestCalibration Sum-
mary”:

39

StereoMorph User Guide v1.6.1 6.5 Determining the calibration accuracy

This read-out summarizes four main error measurements:

• Aligned ideal to reconstructed (AITR) errors: The AITR error aligns an ideal
(perfect) checkerboard to the reconstructed corners using least squares alignment.
Then, the distance is measured between each ideal checkerboard corner and its cor-
responding reconstructed corner. If the corners were perfectly reconstructed, the
ideal and reconstructed points would overlap perfectly. The “AITR RMS errors”
are the alignment errors along each dimension (x,y,z) in the coordinate system of
the calibration points. This coordinate system depends on the orientation of the
first checkerboard so it is somewhat arbitrary. But if you have larger error along
one dimension than another it will generally show up here. For the tutorial project
the error is greatest along the z-axis but overall the mean errors are low (less than
25 microns along any dimension).

• Inter-point distance (IPD) errors: The IPD error summarizes distance rather than
positional errors. For every reconstructed checkerboard, random pairs of points
(without re-sampling) are chosen and the distance between them is compared to
the distance on an ideal checkerboard. Unlike AITR error, this measure doesn’t
allow a comparison of the error along different dimensions. Additionally, while a
range of different lengths are used to calculate the error the lengths can only be
as large as the checkerboard. The IPD error should be about the same order of
magnitude as the AITR error. For the tutorial project the IPD error is less than
20 microns. The reconstructed distances can be either shorter or longer than the
actual distance. The “Mean IPD error” takes the simple mean of these errors: If
there is no bias toward over- or underestimation of distance this should be near
zero.

• Adjacent-pair distance errors: This is identical to IPD error except that the error
is determined only using pairs of adjacent checkerboard corners. This means the

40

StereoMorph User Guide v1.6.1 6.5 Determining the calibration accuracy

ideal distances are uniform and the same size as the square size. Since the corners
in each pair are uniformly close together, their mean position (the mid-point) can
be used to look at how IPD error varies as a function of position in the calibration
volume.

• Epipolar errors: For two cameras arranged in stereo a point in one camera view
must fall along a line in a second camera view. This line is that point’s epipolar line.
The distance between a point’s epipolar line and its corresponding point in that
second camera view is the epipolar error. Since the error is a measure of distance
between a line and point in the image plane the units are pixels.

It’s important to consider the magnitude of these errors relative to the pixel resolution
of the cameras and the size of the calibrated volume. For the tutorial project the image
resolution is around 30 microns/pixel (using 12 MP cameras). Since digitized coordinates
are limited to pixel resolution the reconstructed errors should always be greater 30 mi-
crons. Note that the calibration errors can be lower than this because the checkerboard
corners are detected to subpixel resolution by sampling a small window of pixels around
each internal corner and fitting a sub-pixel corner position. Also, the calibrated volume
is approximately 60 mm x 80 mm x 100 mm. Thus, the mean distance (IPD) error is
less than 0.03% of the length along any one dimension of the space.

In addition to the error summary read-out, calibrateCameras() creates several error di-
agnostic plots for a complete assessment of the error. These will be saved in a folder
“Error tests” within the same folder as the “calibration.txt” file (if the “Error tests”
folder doesn’t exist before running calibrateCameras() one will be created). The plots
for the tutorial calibration can be found in “Run 1/Calibrate/Error tests”.

For example, the function creates a boxplot of the IPD errors, separated by aspect (left)
and a histogram of the IPD errors (right) pooled from all aspects.

And the equivalent plots for epipolar error:

41

StereoMorph User Guide v1.6.1 6.5 Determining the calibration accuracy

The function creates a plot of the IPD error as a function of the length between the two
corners being measured to verify that error is not strongly correlated with the length
being measured.

The function also uses all the reconstructed corners to identify the major axes through
the calibration volume and plots the IPD error as a function of the position along each
of these major axes. This is an easy way to get an idea of the size of the total calibrated
volume and check whether the error is greater along one dimension than another.

42

StereoMorph User Guide v1.6.1 6.5 Determining the calibration accuracy

43

StereoMorph User Guide v1.6.1 7 Photographing objects

7 Photographing objects
This section provides some extra details when using a stereo setup with photographs.
Once the cameras are calibrated you can begin photographing objects. The number of
objects that can be photographed is only limited by the time it takes to position and
photograph each object. You can think of this as “cycling” the objects through the cal-
ibrated space. Note that it doesn’t matter whether you calibrate the cameras before
or after taking photographs of objects - just so long as the cameras remain motionless
throughout.

It is best to have a uniform background that provides good contrast to your specimen.
First, this can decrease the photo size by as much as half (encoding a large black space
takes up less space than a multi-colored, noisy background). Second, it’s easier to discern
points on the edge of the specimen when the edge is clearly distinguishable from the
background. For light-colored specimens, black velvet works well. The cheapest material
available at fabric stores works great and costs about $10 a yard.

Black velvet works great as a uniform black background.

If you’re collecting data on features around an entire object (for example the top, side
and bottom of a skull) you can rotate the specimen and take two or more pairs of pho-
tographs of the same object (referred to here as “aspects”). You’ll end up with two or
more separate sets of landmarks and/or curves in different coordinate systems. These
different sets can be aligned, or “unified”, based on landmarks that are common between
the sets to create a single set of landmarks and/or curves.

If you’d like to see an example of this, download this stereo image set (4 MB). After you
unzip the folder, you’ll find an “Images” folder that contains left and right images of two
different species of bird: a Great Horned Owl (Bubo virginianus) and an African Gray
Parrot (Psittacus erithacus). For each species there are 3 different aspects of each skull,
with the filenames ending in “a1”, “a2”, and “a3”. The Great Horned Owl images are
shown below.

44

https://aaronolsen.github.io/software/stereomorph/tutorial_files/Stereo_image_set.zip

StereoMorph User Guide v1.6.1 7 Photographing objects

The first aspect shows the area underneath the skull most clearly,

the second aspect shows the side of the skull most clearly,

and the third aspect shows the area around the ear most clearly.

StereoMorph has a function that will automatically unify the landmark sets from differ-
ent aspects, which will be detailed in Unification of reconstructed sets. But in order for
the function to recognize different aspects, you’ll need to follow a particular naming con-
vention: each file must end with an “a” and the aspect number as shown above. Also, use

45

StereoMorph User Guide v1.6.1 7 Photographing objects

only letters, numbers and underscores when naming the image files (no spaces). Upload
the photographs from each view (as .jpeg/.jpg files) into a separate folder. When you
name each view folder be sure to use the same names that you used in the calibration
step (e.g. “Left” and “Right” or “View 1” and “View 2”).

Depending on the data you want to collect you might be able to get away with a single
pair of images of each specimen (a single aspect). If you do use multiple aspects, you’ll
need some overlap in landmarks among the images (at least three, preferably five to six)
in order to combine all of the points into a single 3D point set.

46

StereoMorph User Guide v1.6.1 8 StereoMorph digitizing application

8 StereoMorph digitizing application
Once you have captured stereo images or video you can use the StereoMorph digitizing
application to manually identify landmarks or curves that you want to reconstruct into
3D. Currently, StereoMorph doesn’t have any automated feature recognition tools (ex-
cept the checkerboard detection). But the digitizing application provides a user-friendly
interface for identifying features yourself. This can be useful for features that would be
otherwise difficult to identify or reconstruct automatically. The application is launched
from R but runs in your default web browser (you do not need to be connected to the
internet to launch the app since it runs on an internal server). The app is fully functional
across Safari, Chrome, Firefox and Opera.

8.1 Digitizing video frames
Currently, the StereoMorph digitizing application can only handle photographs. So in
order to digitize videos you’ll need to first extract the video frames as images and input
these images to the digitizing application.

1. Load the StereoMorph library if it isn’t already loaded.

Load the StereoMorph package
library(StereoMorph)

2. Extract the frames you want to digitize using the StereoMorph function extract-
Frames(). You’ll need to make sure that your video frames are synchronized. If your
videos are not synchronized but you have a clear visual signal in the view of the cameras
(e.g. turning on and off a light), you can use the extractFrames() function to extract
“synchronized” frames. This will ensure that corresponding frames/images between dif-
ferent views have the same filename.

Once you have a set of images (i.e. frames) from both views this you can follow the
same instructions as for photographs in the next section. If you’d like to work through
the example below with stereo video frames, you can download an example set here (17
MB). This folder contains 50 frames from left and right video footage of freely swimming
Oceanic white tip sharks (video courtesy of Caine Delacy and Mark Bond) along with a
few extra files needed for the digitizing application (a calibration file, a list of points to
identify, and a folder where the shape data will be saved). Unzip this folder and move
the folder contents to your current R working directory.

47

https://aaronolsen.github.io/software/stereomorph/tutorial_files/Stereo_video_frames.zip
https://aaronolsen.github.io/software/stereomorph/tutorial_files/Stereo_video_frames.zip

StereoMorph User Guide v1.6.1 8.2 Opening the digitizing application

Frame from stereo video frame example set (video courtesy of Caine Delacy and Mark
Bond).

3. Launch the digitizing application using the digitizeImages() function.

Launch the digitizing application
digitizeImages(image.file='Images', shapes.file='Shapes 2D',

landmarks.ref='landmarks.txt', cal.file='calibration.txt')

For the remaining steps refer to the next section, starting with step 3. In the digitizing
application you can skip to frame “00030.jpeg” to see some already digitized landmarks.

8.2 Opening the digitizing application
Once you have a set of images from two or more camera views you can use the Stereo-
Morph digitizing application to manually identify the features that you want to recon-
struct into 3D. We used this application in a previous section to precisely measure the
square size of a checkerboard. If you’d like to work through the example below, you can
download an example set of stereo images here (4 MB). Unzip this folder and move the
folder contents to your current R working directory.

1. Load the StereoMorph library if it isn’t already loaded.

Load the StereoMorph package
library(StereoMorph)

2. Launch the digitizing application using the digitizeImages() function.

Launch the digitizing application
digitizeImages(image.file='Images', shapes.file='Shapes 2D',

landmarks.ref='landmarks.txt', curves.ref = 'curves.txt',
cal.file='calibration.txt')

48

https://aaronolsen.github.io/software/stereomorph/tutorial_files/Stereo_image_set.zip

StereoMorph User Guide v1.6.1 8.2 Opening the digitizing application

3. These are the basic input parameters to digitizeImages() when using the app to digitize
stereo image sets (refer to this stereo image set for an example):

• image.file: A folder containing the images to be digitized, separated into a folder
for each view.

• shapes.file: A folder where the shape data will be saved. If this does not exist it
will be created automatically with the same sub-folders as image.file.

• landmarks.ref : A .txt file or vector listing the names of the landmarks to be digi-
tized. Landmark names should only contain letters, numbers and underscores (no
spaces). If the input is a .txt file, each name should be on a separate line (see this
example file).

• curves.ref : (Optional) A .txt file listing the names of the curves to be digitized
with the start and end points of each curve. If not digitizing curves this can be
omitted. These names should only contain letters, numbers and underscores (no
spaces). Each curve should be on a separate line, with the curve name, start, and
end point separated by tabs (see this example file).

• cal.file: The calibration file created by calibrateCameras(). The DLT coefficients
in this file will be used to draw the epipolar line onto the image when digitizing
landmarks.

The StereoMorph digitizing app launched with a stereo image set.

The left two-thirds of the app are the image frame. This is where you can navigate
around the image and add landmarks and curves using your mouse or trackpad. The
right two-thirds are the control panel, for viewing and saving landmark/curve lists and
navigating between images. There are four tabs in the control panel: Settings, Land-
marks, Curves, and Scaling. The Settings tab contains different user-interaction options.
These options will be saved using cookies so they do not have to be reset every time you
open the digitizing app. The Landmarks and Curves tabs contain the pixel coordinates

49

https://aaronolsen.github.io/software/stereomorph/tutorial_files/Stereo_image_set.zip
https://aaronolsen.github.io/software/stereomorph/tutorial_files/landmarks.txt
https://aaronolsen.github.io/software/stereomorph/tutorial_files/landmarks.txt
https://aaronolsen.github.io/software/stereomorph/tutorial_files/curves.txt

StereoMorph User Guide v1.6.1 8.3 Digitizing landmarks

of all digitized landmarks and curve points. The Scaling can be ignored for stereo sets -
it’s used to scale coordinate data for 2D morphometrics.

You can navigate around the image in the image frame using the same basic mouse
actions as in Google Maps. You can zoom in and out by positioning your cursor over the
image and scrolling. To move around the image click and drag the image.

Zoom in and out by scrolling over the image.

8.3 Digitizing landmarks
To digitize a landmark, click the corresponding row in the Landmarks tab. This will
make that landmark the current object.

Move the cursor to where you want to add the landmark and double-click (keyboard
shortcut: ’x’). If you’ve already placed a landmark you can also select it by placing your
cursor over the landmark and double-clicking.

50

StereoMorph User Guide v1.6.1 8.3 Digitizing landmarks

To move an already digitized landmark, first select it and then click and drag it with the
mouse. You can also use the arrows on the keyboard to move in single pixel increments
or hold shift to move in 10 pixel increments.

To delete a landmark, select the landmark and press ’d’. Landmarks with ’-’ values in
the Landmarks panel will be ignored when saving.

For 3D reconstruction, you’ll need to digitize the same landmark in both views. Since the
views have different perspectives of the object sometimes it’s difficult to identify exactly
corresponding points. To help with this you can turn on the epipolar line. In the Settings
panel click the box next to “Show epipolar line”. If you select a landmark, and if that
landmark has already been digitized in the other view, the epipolar line will be projected
across the image.

Epipolar line projected across the image for the landmark in green.

This line represents the line along which the landmark should fall if it corresponds exactly
to the point digitized in the other view. Recall the epipolar error from the section on

51

StereoMorph User Guide v1.6.1 8.4 Digitizing curves

determining the calibration accuracy. The mean epipolar error using the checkerboard
is typically less than 0.5 pixels and the maximum is typically less than 2 pixels. So as-
suming the calibration worked propertly, the epipolar line is a reliable aid in identifying
corresponding points between views.

Once you’ve finished digitizing all of the shapes you’d like to digitize be sure to click
“Save”.

8.4 Digitizing curves
The digitizing app allows you to digitize curves using Bézier curves. Bézier curves are
constructed from a series of control points. Two control points at each end of the curve
determine its start and end point. Control points in between control how the curve bends
away from a straight line between the start and end point.

A 3-point Bézier curve with control points (red) and curve points (blue).

The digitizing app only uses quadratic Bézier curves (3 control points) but an unlimited
number of these curves can be stringed together end-to-end as Bézier splines. This allows
a user to quickly and accurately fit a curve to a feature in an image.

To add a curve, click on the Curves panel at the right. You’ll see a list of all the curve
names to the far right. Below each curve name are the start and end points specified
in curves.ref. These start and end points are treated the same as landmarks in the
digitizing app (they are added to the list in the Landmarks panel if not already listed
in landmarks.ref). Select the first landmark of a curve by clicking on the corresponding
row.

52

https://en.wikipedia.org/wiki/B%C3%A9zier_curve

StereoMorph User Guide v1.6.1 8.4 Digitizing curves

Position the curve start point on the image by double-clicking as described previously
for Digitizing landmarks. Then select the curve end point and position this at the end
of the curve. Now all that remains is to “fill in” a curve between these points. Select
the empty row (with “-”’s) between the start and end point. These are the intermediate
control points that will be used to define the Bézier spline.

Add this point somewhere between the start and the end by double-clicking on the image.
Note that the curve doesn’t pass through this point, it only “reaches” toward it. You
can change the shape of the curve by click-and-dragging this point.

53

StereoMorph User Guide v1.6.1 8.4 Digitizing curves

Change the curve shape by clicking and dragging the control points.

For most curves a single intermediate point will probably not be enough to fit the shape
well. Once you add an intermediate point a new empty row will open up below the
current point in the Curves panel. Select this point and position it somewhere near the
curve. The curve will end at that intermediate point so select the next empty row and
add another intermediate point (for five points total, including the start and end). Note
that as you add control points they alternate between points that the curve “reaches”
to and points that the curve passes through; these are Bézier curves lined up one after
another to form a Bézier spline.

Bézier splines digitized to fit the edge of the upper beak.

Repeat this, adding additional intermediate points until you have a sufficient number
of points to fit the natural curve. To move back and forth between curve points on a
particular curve without having to click the rows in the Curves panel you can use the
keyboard shortcuts ’n’ and ’p’, for next and previous, respectively. Just make sure that
the curves are always complete (the total number of control points must be odd). If the

54

StereoMorph User Guide v1.6.1 8.4 Digitizing curves

curve doesn’t extend continuously between the start and end landmarks then you’ll either
need to add or remove one intermediate point. With a sufficient number of intermediate
points you should be able to fit a spline to pretty much any natural curve.

If you are collecting curve data there is an additional consideration that will effect the
success of the curve reconstruction. The accuracy of the curve reconstruction can vary
depending on the orientation of the object within the calibration volume. If you under-
stand a bit about how the curve reconstruction relates to the epipolar line then you can
find an orientation that will afford you the most accuracy.

Stereo reconstruction requires corresponding points between different views. Curves com-
plicate this a bit because while the first and last point are clearly corresponding, how do
the points along one curve correpond to those along the other? You might think it would
be as simple as matching points that are at same relative position along each curve’s
length (i.e. a point halfway along one curve corresponds to a point halfway along the
other). This turns out not to be the case because of how the different views distort the
projection of the curve onto the image plane.

To solve this problem, StereoMorph identifies corresponding points by taking a point
along the curve in one view and finding a point along the curve in the other view that
intersects with the epipolar line of the first point. Basically, using information from the
calibration to identify the corresponding points. This works best where the epipolar line
is perpendicular to the curve because there is a clear, single point of intersection. At the
other extreme, if the epipolar line is parallel to the curve there can be several points on
the curve at a similar distance from the epipolar line.

For this reason, if you are collecting curves it is best to avoid orienting the object so that
the epipolar line is less than 10 degrees relative to the curve. This may not be avoidable
in some cases but it can at least be minimized. The images below show the same curve
digitized for two different orientations of the specimen. The left is a better orientation
of the specimen for this curve because the epipolar line is nearly 90 degrees to the curve
along its entire length. In contrast, with the orientation on the right the epipolar line
will be nearly tangent to some portions of the curve.

55

StereoMorph User Guide v1.6.1 8.5 Moving between images

The same curve digitized for different orientations of the specimen. Left is a better
orientation for this curve since the epipolar line is less tangent to any one portion of the

curve.

You can easily predict the orientation of the epipolar line for a particular camera arrange-
ment. Imagine a line extending straight out from each camera as in the two arrangements
below. Then imagine what each of these lines would look like in the other camera view
(these are the epipolar lines for the center of the image in each view). These lines repre-
sent generally how the epipolar line will be oriented within each view.

Once you’ve finished digitizing all of the shapes you’d like to digitize be sure to click
“Save”.

8.5 Moving between images
Once you’ve digitized shape data in one image you can move to another image using the
buttons or drop-down menus at the bottom of the control panel.

Changing the aspect will move to another image within the same view (here “aspect”
refers all of the images from a particular camera view). Changing the view will stay
within the same aspect and just change the view. If you’re digitizing video frames, you
can use the aspect buttons or drop-down menu to move among frames.

8.6 Keyboard shortcuts and cursor actions
Below is a guide to the mouse actions and keyboard shortcuts for the digitizing app:

• click-and-drag over image: Move image

56

StereoMorph User Guide v1.6.1 8.6 Keyboard shortcuts and cursor actions

• click-and-drag over marker : Move marker (i.e. landmark, ruler point, curve control
point)

• arrow: Move marker or image (if no marker is selected) in one pixel increments
up/down/right/left

• shift + arrow: Move marker or image in 10 pixel increments up/down/right/left

• shift + cmnd + arrow: Move image or marker in 100 pixel increments up/-
down/right/left

• scroll over image: Zoom in/out of image

• double-click: Add a marker, re-position a marker, select/unselect marker

• Auto-advance: This is an option in the Settings panel that will automatically ad-
vance to the next marker in sequence after the current marker is digitized.

• x : Same action as double-click (add a marker, re-position a marker, select/unselect
marker)

• n: Select the next marker in sequence (the sequence for curve control points is
start, end, and then intermediate points)

• p: Select the previous marker in sequence

• d: Delete the selected marker

• shift + s: Save shapes

• <: Move to previous image (in Aspects)

• >: Move to next image (in Aspects)

• refresh: Restore original shape data from when app was initially loaded (does not
change saved files)

57

StereoMorph User Guide v1.6.1 9 3D Reconstruction

9 3D Reconstruction
Once you have landmarks or curves digitized in two or more views you can reconstruct
them into 3D. This section will explain how to do this using the reconstructStereoSets()
function. Before preceding, load the StereoMorph library, if it itsn’t already loaded.

Load the StereoMorph package
library(StereoMorph)

9.1 Reconstructing landmarks
If you’ve only digitized landmarks and do not have multiple aspects per object, you can
use reconstructStereoSets() to reconstruct all the landmarks for a set of digitized images.
If you’d like to try this with an example you can download this stereo landmark set (10
KB), previously used in the digitizing video frames section. Unzip the folder’s contents
into your current R working directory.

1. Call reconstructStereoSets() with the following three parameters.

Reconstruct all digitized landmarks in Shapes 2D folder
reconstructStereoSets(shapes.2d='Shapes 2D', shapes.3d='Shapes 3D',

cal.file='calibration.txt')

These parameters refer to:

• shapes.2d: A folder containing digitized (2D) shape data, separated into different
folders by view. This is the same folder of shape files you used with the digitizing
application (see digitizing photographs).

• shapes.3d: A folder where the reconstructed data should be saved. If this folder
doesn’t exist, it will be created.

• cal.file: The calibration file produced by calibrateCameras().

The reconstructStereoSets() function will reconstruct all the landmarks digitized in at
least two views and save these into the “shapes.3d” folder using the same name as the
corresponding 2D shape files. The reconstructed landmarks will be in the same units
used in the calibration step (for the example above this is mm).

2. StereoMorph saves these files in a special xml-format that can be read using the Stere-
oMorph function readShapes(). Use readShapes() to read these reconstructed landmarks
from the 3D shapes folder.

Read all digitized landmarks in Shapes 3D folder
shapes <- readShapes(file='Shapes 3D')

Print all the recontructed landmarks as an array
shapes$landmarks

58

https://aaronolsen.github.io/software/stereomorph/tutorial_files/Stereo_landmark_set.zip
https://aaronolsen.github.io/software/stereomorph/tutorial_files/Stereo_landmark_set.zip

StereoMorph User Guide v1.6.1 9.2 Measuring 3D lengths

If there are multiple files in the “Shapes 3D” folder then the landmarks will be returned
as an array in which the first dimension is the landmarks, the second dimension is the
xyz-coordinates, and the third dimension is every image or frame. Note that when read-
ing all landmarks from several files in this way, if a landmark is not digitized in every
image it will be NA for those images. Thus, this landmark array will always be as long
as all of the unique landmarks digitized in the entire image set.

3. For example, you can use the following code to access different landmarks of interest.

Access a landmark from the first image
shapes$landmarks['caudal_fin_fork', , 1]

Access a landmark from all images
shapes$landmarks['caudal_fin_fork', ,]

Access al landmarks from the first image
shapes$landmarks[, , 1]

The reading shape data section has more examples of how to use the readShapes() func-
tion.

9.2 Measuring 3D lengths
Currently, StereoMorph does not have a tool to measure 3D lengths directly in the digi-
tizing application. However, this can be easily done by using landmarks to define the two
end points of the length you would like to measure. This adds flexibility as 3D lengths
can then be measured among any identified landmarks.

3D lengths can be measured by using landmarks to define the end points of the length
to be measured. 3D lengths can be measured among any of these identified 4 landmarks

59

StereoMorph User Guide v1.6.1 9.3 Reconstructing landmarks and curves

(shown in small purple and green circles). Image is from stereo video frame example set
(courtesy of Caine Delacy and Mark Bond).

1. Reconstruct and read in the 3D landmarks (see the preceding section, reconstructing
landmarks).

Reconstruct all digitized landmarks in Shapes 2D folder
reconstructStereoSets(shapes.2d='Shapes 2D', shapes.3d='Shapes 3D',

cal.file='calibration.txt')

Read all digitized landmarks in Shapes 3D folder
shapes <- readShapes(file='Shapes 3D')

2. Use the StereoMorph function distancePointToPoint() to find the distance between
any two landmarks.

Find distance between two landmarks in the first frame
distancePointToPoint(shapes$landmarks[c('caudal_fin_posterior_tip',

'caudal_fin_superior_tip'), , 1])

9.3 Reconstructing landmarks and curves
If you’ve digitized both landmarks and curves you can use reconstructStereoSets() to
reconstruct both at the same time. If you’d like to try this with an example you can
download this stereo landmark and curve set (10 KB), previously used in the digitizing
photographs section. Unzip the folder’s contents into your current R working directory.

1. Call reconstructStereoSets().

Reconstruct landmarks and curves
reconstructStereoSets(shapes.2d='Shapes 2D', shapes.3d='Shapes 3D',

cal.file='calibration.txt', even.spacing='even_spacing.txt')

For curves, the function needs an additional parameter, even.spacing that specifies how
many points will be reconstructed along each curve. This can be a ‘.txt’ file listing how
many curve points you’d like each reconstructed curve to have. On each line of the ’.txt’
file, list the curve name and the number of points (see this example file). You can also
make even.spacing a single integer if you want each curve to have the same number of
points.

If you’ve photographed the same object in different orientations (if you have multiple
aspects) the landmarks and curves in each aspect will be in different coordinate systems.
These can be aligned with one another based on shared landmarks between sets into a
single set, which is referred to here as “unification”. By default, the reconstructStere-
oSets() function performs both reconstruction and unification as long as aspect labels
have been added to all of the image names (e.g. “ a1”, “ a2”, etc.).

60

https://aaronolsen.github.io/software/stereomorph/tutorial_files/Stereo_shape_set.zip
https://aaronolsen.github.io/software/stereomorph/tutorial_files/even_spacing.txt

StereoMorph User Guide v1.6.1 9.3 Reconstructing landmarks and curves

If the input parameter print.progress is TRUE (the default), the function prints each
of the steps along with the associated errors. If you try this with the example stereo
shape set, you’ll see that one of the objects (bubo virginianus FMNH488595) has three
different aspects. Landmark reconstruction is performed for each of these three aspects.
Plus, the first aspect has 4 curves which are also reconstructed. Your mean landmark
reconstruction errors should be near or less than 1 pixel. The curve reconstruction errors
can range from 1-10 pixels. Then all three aspects are unified. Since there are three
aspects, there are two separate unifications: two aspects are unified, then the third is
unified with this unified set. The two errors after “Unification RMS Error” are the errors
for each of these unifications in the same units as the calibration (here, mm).

The second specimen (psittacus erithacus FMNH312899) in the example stereo set has
landmarks digitized in two aspects but I deliberately chose landmarks such that there is
only 1 common landmark between the two sets. For this reason the function reports that
there are not enough common points for unification. In this case, the function will save
each aspect as a separate 3D set (retaining the “ a#”). To unify 3D sets you theoretically
need at least 3, non-colinear points in common between the sets. However, in practice
more common points are required (at least 5-6) to get a good alignment between the two
sets.

2. There are several optional input parameters to reconstructStereoSets() that can be
helpful. For instance, if you only want to reconstruct/unify one or more particular
specimens, you can specify these as a vector using the input parameter set.names.

Only run for particular file(s) using set.names
reconstructStereoSets(shapes.2d='Shapes 2D', shapes.3d='Shapes 3D',

cal.file='calibration.txt', even.spacing='even_spacing.txt',
set.names=c('psittacus_erithacus_FMNH312899'))

3. If you want to run the function only for specimens where the 2D shape files have
changed, you can set update.only to TRUE (default is FALSE).

Only run on modified files using update.only
reconstructStereoSets(shapes.2d='Shapes 2D', shapes.3d='Shapes 3D',

cal.file='calibration.txt', even.spacing='even_spacing.txt', update.only=TRUE)

This saves time in running the function so that as you are digitizing specimens you can
run reconstructStereoSets() only for those files that actually need to be updated.

4. If you want the function to print more details as it runs, you can set the input param-
eter verbose to TRUE (default is FALSE). For instance, this will print the reconstruction
error for each of the landmarks. This is helpful for identifying incorrectly digitized mark-
ers.

Print more error details using verbose
reconstructStereoSets(shapes.2d='Shapes 2D', shapes.3d='Shapes 3D',

cal.file='calibration.txt', even.spacing='even_spacing.txt', verbose=TRUE)

61

https://aaronolsen.github.io/software/stereomorph/tutorial_files/Stereo_shape_set.zip
https://aaronolsen.github.io/software/stereomorph/tutorial_files/Stereo_shape_set.zip

StereoMorph User Guide v1.6.1 9.4 Reading shape data

Here are some additional input parameters that might be helpful:

• reconstruct.curves: (default TRUE) Make FALSE to only reconstruct landmarks.

• unify: (default TRUE) Make FALSE to reconstruct all aspects as separate sets (no
unification).

• min.common: (default 3) This is the minimum number of common points between
sets that are required for unification. It is helpful to set this higher than 3 (e.g.
5) so that you can easily identify when you need more common points between
different aspects.

9.4 Reading shape data
The reconstructed landmarks and curve points are saved into the 3D shapes folder. Stere-
oMorph saves these files in a special xml-format that can be read using the StereoMorph
function readShapes(). If you’d like to try using readShapes() with an example dataset
you can download this stereo landmark and curve set (10 KB), previously used in the
digitizing photographs section. Unzip the folder’s contents into your current R working
directory.

1. Input a single file to readShapes to read all the shape data from that file.

Read 3D landmarks and curves from a particular file (object)
shapes <- readShapes(file='Shapes 3D/bubo_virginianus_FMNH488595.txt')

This reads all of the shape data from bubo virginianus FMNH488595.txt into the list
structure shapes used by StereoMorph to organize different types of shape data. This
structure has a custom print format that tells you all of the shapes in the list:

Print the contents of shapes
shapes

The two shapes within shapes are landmarks and curves. The landmarks are in a 34
x 3 matrix, where the rows correspond to the landmarks and the columns to the 3D
reconstructed coordinates. To access the landmarks matrix, use the ‘$’ operator (as you
would use to access any list element):

Print the landmarks
shapes$landmarks

You can then access any of the landmarks by using the standard matrix notation in R:

Print the xyz-coordinates of the cranium_occipital landmark
shapes$landmarks['cranium_occipital',]

62

https://aaronolsen.github.io/software/stereomorph/tutorial_files/Stereo_shape_set.zip

StereoMorph User Guide v1.6.1 9.4 Reading shape data

The curve points require one extra step. Each curve can have a different number of
points, so each is saved within a separate list, accessible by the curve name. To get a list
of the curve names, use the ’$’ operator with ’curves’ and the names() function:
Print the curve names
names(shapes$curves)

These are the 4 curves that have 3D coordinates. Use the ’$’ operator to return a
particular curve, which yields a n x 3 matrix, where n is the number of points in the
curve (specified previously through even.spacing).
Print the upper_bill_tomium_L curve points
shapes$curves$upper_bill_tomium_L

2. By inputting multiple filenames into readShapes(), you can read all the shape data
from those files at once to create a landmark array or larger list structures of curves.
Specify two files to be read by readShapes():
Specify multiple shape files
file <- c('Shapes 3D/bubo_virginianus_FMNH488595.txt',

'Shapes 3D/psittacus_erithacus_FMNH312899_a1.txt')

Read shape files
shapes <- readShapes(file=file)

Shapes is still a list, but now the landmarks are an array of dimensions n x m x k, where
n is the number of landmarks, m is the number of dimensions, and k is the number of
files. Also, the curves have gained an additional level. The first level are the files that
have been read, then each curve.
Print the contents of shapes
shapes

Like before, the ’$’ operator can be used to access the landmarks, accessing, for example,
a particular landmark across all of the files,
Print the xyz-coordinates of cranium_occipital across the files
shapes$landmarks['cranium_occipital', ,]

or accessing all the landmarks for a particular file.
Print all the landmarks for bubo_virginianus_FMNH488595
shapes$landmarks[, , 'bubo_virginianus_FMNH488595']

3. In addition to inputting a vector of files for readShapes(), you can also input a folder
containing shape files. In that case readShapes() will read in all of the shape files in that
folder:
Read all shape files in folder Shapes 3D
shapes <- readShapes(file='Shapes 3D')

63

StereoMorph User Guide v1.6.1 10 Visualizing shape data

10 Visualizing shape data
This section will demonstrate how to plot landmarks and curves using the R package
‘rgl’. If you’d like to try using readShapes() with an example dataset you can download
this stereo landmark and curve set (10 KB), previously used in the 3D reconstruction
section. Unzip the folder’s contents into your current R working directory.

1. Begin by loading the StereoMorph and rgl packages.

Load the StereoMorph and rgl packages
library(StereoMorph)
library(rgl)

2. Read in the shapes from a file in the tutorial project “Shapes 3D” folder.

Read shapes
shapes <- readShapes(file='Shapes 3D/bubo_virginianus_FMNH488595.txt')

Save the landmark matrix into a separate variable
lm <- shapes$landmarks

3. Define the ranges of x,y,z values of the plots as a variable. This will be used to set the
aspect ratio of the plot box. Otherwise, plot3d() will plot the points in a box with equal
lengths on all sides.

Define range
r <- apply(lm, 2, 'max') - apply(lm, 2, 'min')

Use plot3d() to plot the landmarks within a bounding box
plot3d(lm, aspect=c(r/r[3]), size=7)

4. To plot the curve points, use lapply() to apply plot3d() to each element of the list
’shapes’.

Plot curve points
lapply(shapes$curves, plot3d, size=4, col="lightblue", add=TRUE)

The rgl plot opens in an interactive window that allows you to rotate the coordinates
using the mouse.

64

https://cran.r-project.org/web/packages/rgl/index.html
https://aaronolsen.github.io/software/stereomorph/tutorial_files/Stereo_shape_set.zip
https://aaronolsen.github.io/software/stereomorph/tutorial_files/Stereo_shape_set.zip

StereoMorph User Guide v1.6.1 10 Visualizing shape data

y

x

-40
-30
-20
-10

-10

0

10

z

20

30

-60 -40 -20 0

Plot of reconstructed and unified landmarks and curve points using plot3d() in the rgl
package.

65

StereoMorph User Guide v1.6.1 11 Reflecting missing bilateral landmarks

11 Reflecting missing bilateral landmarks
When digitizing landmarks and curves you might not be able to digitize every point on
both the left and right side. For objects that have bilateral symmetry you can use pairs
of left and right points and points within the midline plane to define the midline plane
and then project landmarks that are missing on one side across the midline plane. Even
if you have data for both the left and right side you might want to average the sides to
create a final shape that has perfect bilateral symmetry. This can be useful for reducing
noise or for making subsequent analyses simpler. This section will show how to use the
StereoMorph function reflectMissingShapes() to do both of these operations.

If you’d like to try using reflectMissingShapes() with an example dataset you can down-
load this stereo landmark and curve set (10 KB). Unzip the folder’s contents into your
current R working directory.

1. Begin by loading the StereoMorph library.

Load the StereoMorph package
library(StereoMorph)

In order for reflectMissingShapes() to recognize which landmarks are left, right, or on
the midline, your landmark names will have to follow a particular convention. Landmark
names that are right or left should end in “ ” followed by either “R” or “L”. Capitalization
doesn’t matter, so “r” or “l” will also work. These can be followed by numbers (e.g. for
curve points) but should not be followed by other letters. All landmarks that don’t have
these endings will be treated as midline landmarks. For example, here are examples of
acceptable landmark names to indicate a side:

jugal_upperbeak_L
jugal_upperbeak_r
jugal_upperbeak_R0202

2. The reflectMissingShapes() function takes two main inputs: shapes (the shape data to
be reflected) and file (where the reflected shapes should be saved). But these two inputs
allow quite a bit of flexibility. For instance, the function call to reflect missing landmarks
for one 3D shape file looks like this:

Reflect missing shape data
rms <- reflectMissingShapes(shapes='Shapes 3D/bubo_virginianus_FMNH488595.txt',

file='Reflected/bubo_virginianus_FMNH488595.txt', average=TRUE)

If the directory in “file” doesn’t exist, one will automatically be created. Note that aver-
age is set to TRUE (default is FALSE). This will average all of the bilateral landmarks
such that all midline landmarks are within a single, midline plane and all left and right
landmarks are reflected perfectly across the midline plane.

66

https://aaronolsen.github.io/software/stereomorph/tutorial_files/Stereo_shape_set.zip
https://aaronolsen.github.io/software/stereomorph/tutorial_files/Stereo_shape_set.zip

StereoMorph User Guide v1.6.1 11 Reflecting missing bilateral landmarks

If the input to reflectMissingShapes() is a single set of shapes, the function will output
the reflected shape data as a shape data structure. As shown in Reading shape data, you
can access the reflected landmarks using the ’$’ operator:

Print reflected landmarks
rms$landmarks

2. You can run reflectMissingShapes() over multiple files at once by making shapes and
file vectors of corresponding file paths:

Set shape files to reflect
specimen <- c('bubo_virginianus_FMNH488595.txt',

'psittacus_erithacus_FMNH312899_a1.txt')

Reflect missing shape data for specified files
rms <- reflectMissingShapes(shapes=paste0('Shapes 3D/', specimen),

file=paste0('Reflected/', specimen), average=TRUE)

Currently, for this input type the function returns NULL.

3. To run reflectMissingShapes() over all the files in a particular folder, use paths to
folders as input rather than to particular files. If a folder input to file doesn’t exist then
one will be created.

Reflect missing shape data for all files in a folder
rms <- reflectMissingShapes(shapes='Shapes 3D', file='Reflected',

average=TRUE)

You can also input a shape structure rather than a shape file.

Read shape file
shapes <- readShapes(file='Shapes 3D/bubo_virginianus_FMNH488595.txt')

Reflect missing shape data for shape data
rms <- reflectMissingShapes(shapes=shapes, average=TRUE)

file can be omitted, in which case the function will not create a file for the reflected shape
data and will only return a shapes list. file can only be omitted for single shape set input
to reflectMissingShapes().

4. Lastly, print.progress can be set to TRUE in order to view the reflection errors:

Reflect missing shapes and print error summary
rms <- reflectMissingShapes(shapes=shapes, average=TRUE,

print.progress=TRUE)

5. To visualize the reflected shape data, you can use the plot3d() function as shown
previously in Visualizing shape data.

67

StereoMorph User Guide v1.6.1 11 Reflecting missing bilateral landmarks

Load the rgl package
library(rgl)

Read shapes
shapes <- readShapes(file='Reflected/bubo_virginianus_FMNH488595.txt')

Get landmarks
lm <- shapes$landmarks

Set landmark range
r <- apply(lm, 2, 'max') - apply(lm, 2, 'min')

Plot landmarks
plot3d(lm, aspect=c(r/r[3]), size=7)

Plot curves
lapply(shapes$curves, plot3d, size=4, col="lightblue", add=TRUE)

y x

-40

-20
-30

-10
-20

-10

0

10

z

20

30

-60 -40 -20 0

Plot of reflected landmarks and curves using plot3d() in the rgl package.

68

StereoMorph User Guide v1.6.1 12 Aligning bilateral landmarks

12 Aligning bilateral landmarks
The 3D shape data produced so far have an entirely arbitrary orientation in 3D space.
For subsequent analyses this shouldn’t make a difference but for visualization purposes
it can be useful to place the shape data in a consistent orientation. If you have bilateral
shape data (left/right), you can align the shapes to the midline plane such that all points
at the midline will have z-values of 0. This section will show you how to use the Stere-
oMorph function alignShapesToMidline() to align landmarks and curves to the midline
plane.

If you’d like to try using alignShapesToMidline() with an example dataset you can down-
load this stereo landmark and curve set (10 KB). Unzip the folder’s contents into your
current R working directory.

1. Begin by loading the StereoMorph library.

Load the StereoMorph package
library(StereoMorph)

As for reflecting missing landmarks, in order for alignShapesToMidline() to recognize
which landmarks are left, right, or on the midline, your landmark names will have to
follow a particular convention.Landmark names that are right or left should end in “ ”
followed by either “R” or “L”. Capitalization doesn’t matter, so “r” or “l” will also work.
These can be followed by numbers (e.g. for curve points) but should not be followed
by other letters. All landmarks that don’t have these endings will be treated as midline
landmarks. For example, here are examples of acceptable landmark names to indicate a
side:

jugal_upperbeak_L
jugal_upperbeak_r
jugal_upperbeak_R0202

2. The alignShapesToMidline() function takes the same two main inputs as reflectMiss-
ingShapes(): shapes (the shape data to be aligned) and file (where the aligned shapes
should be saved). These two inputs also allow quite a bit of flexibility. For instance, the
function call to align shapes for one 3D shape file looks like this:

Align shapes to midline
asm <- alignShapesToMidline(shapes='Reflected/bubo_virginianus_FMNH488595.txt',

file='Aligned/bubo_virginianus_FMNH488595.txt')

If the input to alignShapesToMidline() is a single set of shapes, the function will output
the aligned shape data as a shape data structure. As shown in Reading shape data, you
can access the reflected landmarks using the ’$’ operator:

Print landmarks
asm$landmarks

69

https://aaronolsen.github.io/software/stereomorph/tutorial_files/Stereo_shape_set.zip
https://aaronolsen.github.io/software/stereomorph/tutorial_files/Stereo_shape_set.zip

StereoMorph User Guide v1.6.1 12 Aligning bilateral landmarks

Note that if you want all of your midline landmarks to have 0 z-values, you’ll need to
run reflection with average set to TRUE.

3. You can run alignShapesToMidline() over multiple files at once by making shapes and
file vectors of corresponding file paths:

Specify multiple specimens
specimen <- c('bubo_virginianus_FMNH488595.txt',

'psittacus_erithacus_FMNH312899_a1.txt')

Align shapes to midline
asm <- alignShapesToMidline(shapes=paste0('Reflected/', specimen),

file=paste0('Aligned/', specimen))

Currently, for this input type the function returns NULL.

4. To run alignShapesToMidline() over all the files in a particular folder, use paths to
folders as input rather than to particular files. If a folder input to file doesn’t exist then
one will be created.

Align shapes to midline
asm <- alignShapesToMidline(shapes='Reflected', file='Aligned')

5. You can also input a shape structure rather than a shape file.

Read shapes
shapes <- readShapes(file='Reflected/bubo_virginianus_FMNH488595.txt')

Align shapes to midline
asm <- alignShapesToMidline(shapes=shapes)

Note that file can be omitted, in which case the function will not create a file for the
aligned shape data and will only return a shapes list. file can only be omitted for single
shape set input to alignShapesToMidline().

7. Lastly, print.progress can be set to TRUE in order to view the alignment errors:

Align shapes to midline and print error summary
asm <- alignShapesToMidline(shapes=shapes, print.progress=TRUE)

The printed errors are the distance of the midline points from the midline. If you’ve
previously reflected the shape data with average set to TRUE all of these errors will be
0 since all midline points will be aligned perfectly with the midline.

8. To visualize the aligned shape data, you can use the plot3d() function as shown
previously in Visualizing shape data.

70

StereoMorph User Guide v1.6.1 12 Aligning bilateral landmarks

Load the rgl package
library(rgl)

Read shapes
shapes <- readShapes(file='Aligned/bubo_virginianus_FMNH488595.txt')

Get landmarks
lm <- shapes$landmarks

Set landmark range
r <- apply(lm, 2, 'max') - apply(lm, 2, 'min')

Plot landmarks
plot3d(lm, aspect=c(r/r[3]), size=7)

Plot curves
lapply(shapes$curves, plot3d, size=4, col="lightblue", add=TRUE)

lm[,2]
lm[,1]

-5-10
05

101520

-10

0

10

lm[,3]

20

-20

-40 -20 0 20

Plot of aligned landmarks and curves using plot3d() in the rgl package.

71

StereoMorph User Guide v1.6.1 13 Additional features

13 Additional features

13.1 Extracting video frames
Since the StereoMorph digitizing application cannot read videos directly, the frames must
be extracted from the videos and input to the digitizing application as images. Frames
can be extracted in StereoMorph using the function extractFrames(). Before using ex-
tractFrames() be sure that you have completed the steps in installing ffmpeg so that R
can read the video files. If you’d like to work through the example below, you can down-
load an example video file here (10 MB). Note that in Safari you may have to right-click
and select “Download Video” rather than using File/Save As.

1. If you are unsure of how many frames the video has or which frames you would like
to extract, you can call extractFrames() without any parameters.

Extract frames from a video
extractFrames()

The function will prompt you to enter a video file that you want to extract frames from.
Either type the video file path or simply click and drag the video file into the R console
and the file path will be copied over.

2. Next, the function will prompt you to ask where you want to save the extracted
frames. Either type a file path to a folder or simply click and drag a folder into the R
console and the file path will be copied over.

3. The function will then tell you the number of total video frames and ask you to enter
the frames that you want to extract. Note that the first frame is frame 0. The example
video has 100 frames total, so you can enter any frames between 0 and 99. You can
specify the frames you want to extract by entering a single number, using the ‘:’ symbol
or using the c() or seq() functions:

To extract a single frame
2

To extract all frames between 3 and 10 (including 3 and 10)
3:10

To extract every third frame between 5 and 20 (including 5 and 20)
seq(5, 20, by=3)

To extract a particular set of frames
c(0, 4, 5, 9)

By default, if the number of frames you set to extract is greater than 100, the function
will list all the frames to be extracted and issue a second prompt to ask if you are sure
(to avoid extracting thousands of frames by mistake). This warning can be turned off by

72

https://aaronolsen.github.io/software/stereomorph/tutorial_files/Example_video.mov
https://aaronolsen.github.io/software/stereomorph/tutorial_files/Example_video.mov

StereoMorph User Guide v1.6.1 13.2 Extracting synchronized frames

setting the warn.min parameter to any number larger than the total number of frames
in the video (e.g. 1000000).

4. If you already know the input parameters in advance and want to use the function
without any prompts, you can just set these parameters in the function call. Create a
folder named “Frames” in your current R working directory.

5. Call extractFrames with all the input parameters.
Extract the first 20 frames from the example video
extractFrames(file='Example_video.mov', save.to='Frames', frames=0:20)

13.2 Extracting synchronized frames
If you are extracting frames from two or more videos that are not synchronized you
might want to make sure that the extracted frames have the same names. By default,
extractFrames() will name the extracted frames the name of the corresponding frame
(i.e. frame 50 of a video will be named “000050.jpeg”). extractFrames() adds enough
zeros to the start of the name to maintain the same filename length for all frames.

However, if two videos are not synchronized but you know the time offset (e.g. 30 frames)
you might want to extract frames 0-49 from one video and frames 30-79 from the sec-
ond video. If you were to do this, the names of the extracted images from the first
video would be “000000.jpeg” to “000049.jpeg” and those from the second video would
be “000030.jpeg” to “000079.jpeg”. In order to “synchronize” the video frames we can
name both sets “000000.jpeg” to “000049.jpeg”. To override the default names created
by extractFrames(), you can use the names parameter.

For example, the following command will extract frames 30-79 and name them “000000.jpeg”
to “000049.jpeg”. The formatC() function is used to add leading zeros to the numbers
0:49 to create a string of width, width.
Extract the first 20 frames from the example video
extractFrames(file='Example_video.mov', save.to='Frames', frames=30:79,

names=formatC(0:49, width=6, format='d', flag='0'))

StereoMorph currently does not contain any special tools to determine the time/frame
offset between two videos. However, one simple way to determine this offset is to turn on
and off a light in view of the cameras. You can then use the extractFrames() function to
narrow down and identify the on/off frame in each view and thereby determine the offset.

13.3 Testing the accuracy using a second checkerboard
The section Calibrating stereo cameras showed how to calibrate a stereo camera setup,
by photographing a checkerboard pattern at different positions and angles in the cali-

73

StereoMorph User Guide v1.6.113.3 Testing the accuracy using a second checkerboard

bration volume and using the StereoMorph function calibrateCameras() to estimate the
calibration coefficients and test the calibration accuracy. Recall however that by deter-
mining the calibration accuracy using the same checkerboard used in the calibration it
isn’t possible to test whether the calibration has the correct scaling (the checkerboard
square size is identical throughout).

This section will demonstrate how to use the StereoMorph function testCalibration() to
test the calibration accuracy, using a checkerboard with a different square size. This
serves as a more independent test of the calibration accuracy. This section will be brief
since the steps for using testCalibration() are nearly identical to those for calibrateCam-
eras() (refer to Calibrating stereo cameras for more details on calibrateCameras()).

1. Begin by photographing a checkerboard in the calibration volume in the same manner
as for the calibration step.

Examples of a test checkerboard photographed from two views at different positions
and angles within the calibration space.

2. Upload the images into a folder, separating, the images from different views into two
different folders (e.g. “Left” and “Right”, “View 1” and “View 2”) just like for the cali-
bration step.

If you’d like to try out the following code with an example dataset you can download
this test calibration image set (3 MB). This example set tests the scaling accuracy of
the calibration performed in This example set uses a checkerboard that differs both in
square size (5.080 mm versus 6.35 mm) and the number of internal corners (7x6 versus
8x6). Unzip the folder and move its contents into your current R working directory.

3. Make sure the StereoMorph library is loaded.

Load the StereoMorph package
library(StereoMorph)

74

https://aaronolsen.github.io/software/stereomorph/tutorial_files/Test_calibration_set.zip
https://aaronolsen.github.io/software/stereomorph/tutorial_files/Test_calibration_set.zip

StereoMorph User Guide v1.6.113.3 Testing the accuracy using a second checkerboard

4. Call testCalibration().

Test calibration against other checkerboard set
test_cal <- testCalibration(img.dir='Images', cal.file='calibration.txt',

corner.dir='Corners', sq.size='5.080 mm', nx=7, ny=6, error.dir='Errors',
verify.dir='Verify')

The basic input parameters are nearly identical to calibrateCameras(). Here is a brief
description of each parameter:

• img.dir : The folder containing the checkerboard images, each view in a separate
folder.

• cal.file: The calibration file previously created by calibrateCameras().

• corner.dir : A folder where the corners will be saved. If this folder does not exist,
a new folder will automatically be created.

• sq.size: The size of the squares along with the units (length along any one side).

• nx : The number of internal corners along one dimension (the choice of which is nx
and ny is arbitrary but must be consistent throughout).

• ny: The number of internal corners along the other dimension.

• error.dir : A folder in which to save the error diagnostics plots. Can be omitted to
just print error summary in console.

• verify.dir : (Optional) A folder where images will be saved that show the detected
corners. If this folder does not exist, a new folder will automatically be created.

Just as in the calibration step, it’s important to review the images in verify.dir and make
sure that the corners are being returned in the same order for all of the images (the first
corner is indicated by a red circle). If your cameras are arranged such that one view is
upside-down relative to the other (if flip.view was TRUE for the calibration) you don’t
have to specify that as an input parameter. The function will detect this setting from
the calibration file.

75

StereoMorph User Guide v1.6.113.3 Testing the accuracy using a second checkerboard

The function returns the accuracy test in the same way as the calibration step. Several
error diagnostic plots are created if error.dir is specified. Additionally, the function prints
an error summary in the console:

dltTestCalibration Summary
Number of aspects: 6
Number of views: 2
Square size: 5.08 mm
Number of points per aspect: 42
Aligned ideal to reconstructed (AITR) point position errors:

AITR RMS Errors (X, Y, Z): 0.0148 mm, 0.0220 mm, 0.0212 mm
Mean AITR Distance Error: 0.0309 mm
AITR Distance RMS Error: 0.0346 mm

Inter-point distance (IPD) errors:
IPD RMS Error: 0.0316 mm
IPD Mean Absolute Error: 0.0237 mm
Mean IPD error: -0.0161 mm

Adjacent-pair distance errors:
Mean adjacent-pair distance error: 0.000650 mm
Mean adjacent-pair absolute distance error: 0.0167 mm
SD of adjacent-pair distance error: 0.0188 mm

Epipolar errors:
Epipolar RMS Error: 0.304 px
Epipolar Mean Error: 0.304 px
Epipolar Max Error: 0.970 px
SD of Epipolar Error: 0.209 px

The errors in this printed summary are fairly close to those from the calibration step. One
important error measure to note here is the “Mean IPD error”. This is the mean error
of all the inter-point distance (length measurements) among points on the checkerboard.
Since this is not an absolute mean error, it should be close to zero because the error
should not be biased (i.e. the calibration should not consistently under- or overestimate
the lengths). Here it differs from 0 by 0.016 mm (16 microns). We can call this negligible
since it is below the pixel resolution threshold for this setup (at least 30 microns/pixel).

76

StereoMorph User Guide v1.6.1 14 Citing StereoMorph

14 Citing StereoMorph
The StereoMorph R package and its associated digitizing app are the result of several
years of work. I am pleased to offer the software open-source and free of charge and hope
that users find it useful and that it brings about interesting, fruitful and fun advances
for biologists and non-biologists alike. I only ask that if you use StereoMorph and share
your results that you include a citation. For peer-reviewed publications, please cite the
following article:

Olsen, A.M. and M.W. Westneat. 2015. StereoMorph: an R package for the collec-
tion of 3D landmarks and curves using a stereo camera set-up. Methods in Ecology and
Evolution. 6:351-356. DOI: 10.1111/2041-210X.12326.

15 Acknowledgements
I would like to thank several people whose helpful feedback and assistance over the years
has greatly improved StereoMorph. These include, but are not limited to: Justin Lem-
berg, Brett Aiello, Andy Smith, Hannah Weller, Andrew George, Dallas Krentzel, Mark
Westneat, Gavin Thomas, Chery Cherian, Sushma Reddy, Vincent Bonhomme, Stewart
Edie, Yinan Hu, Stas Malavin, Ty Hedrick, Merrilee Guenther, Benjamin Rubin, and
José Iriarte-Dı́az.

I would like to extend my appreciation to Caine Delacy and Mark Bond, with whom I
had the great opportunity to collaborate on calibrating an underwater GoPro setup using
StereoMorph. This collaboration led to the addition of video reading tools and distortion
correction to the StereoMorph package and produced the fantastic stereo video footage
of free swimming Oceanic white tip sharks featured in this user guide. My sincere thanks
to Caine and Mark for allowing me to include these videos here.

I would like to thank Dave Willard, Ben Marks, and Mary Hennen at the Field Museum
of Natural History in Chicago, Illinois for their assistance in the use of specimens from the
bird skeleton collection. The development of StereoMorph was made possible by funding
from the US National Science Foundation (DGE-1144082; DGE-0903637; DBI-1612230).

77

http://doi.org/10.1111/2041-210X.12326

	Introduction
	Getting started
	Installing StereoMorph
	Installing ffmpeg (only if using video)

	Choosing cameras
	Cameras for stereo photography
	Cameras for stereo videography

	Creating a checkerboard
	Determining an appropriate checkerboard size
	Creating the checkerboard
	Measuring square size using DPI and scaling
	Precision measurement of square size using a ruler
	Creating a checkerboard stand

	Arranging the cameras
	Arrangement for stereo photography

	Calibrating stereo cameras
	General calibration steps and parameters
	Calibrating with photographs
	Calibrating with videos
	Estimating calibration coefficients
	Determining the calibration accuracy

	Photographing objects
	StereoMorph digitizing application
	Digitizing video frames
	Opening the digitizing application
	Digitizing landmarks
	Digitizing curves
	Moving between images
	Keyboard shortcuts and cursor actions

	3D Reconstruction
	Reconstructing landmarks
	Measuring 3D lengths
	Reconstructing landmarks and curves
	Reading shape data

	Visualizing shape data
	Reflecting missing bilateral landmarks
	Aligning bilateral landmarks
	Additional features
	Extracting video frames
	Extracting synchronized frames
	Testing the accuracy using a second checkerboard

	Citing StereoMorph
	Acknowledgements

